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Abstract— Despite significant advances in bipedal locomotion,
enabling humanoid robots to perform general whole-body
tasks through meaningful interaction with their environments
remains a challenging open problem. While deep reinforcement
learning (RL) has recently demonstrated impressive results
in dynamic walking — even on complex and unpredictable
terrain — real-world utility demands that humanoids go beyond
locomotion to execute task-oriented behaviors.

In this work, we propose a framework for teaching humanoid
robots to imitate humans doing useful tasks by training policies
for tracking human motion references. Our approach leverages
high-quality in-house motion capture (MoCap) data, from
which we perform kinematic retargeting to project human
trajectories onto a humanoid platform. Crucially, we adopt
a hybrid learning paradigm: the policy is trained to track
upper-body and root motions from the MoCap data, and
receives additional supervision from a pre-trained omnidirec-
tional walking expert. This expert guidance, implemented via
a Behavior Cloning (BC) objective, ensures that leg motion
respects dynamics and kinematic constraints of the humanoid.
We train policies entirely in simulation and successfully transfer
them to a real humanoid robot. We validate our method on a
box loco-manipulation task, demonstrating effective sim-to-real
transfer and marking a step toward more capable, task-driven
humanoid behavior.

I. INTRODUCTION

We propose a two-stages approach for humanoid loco-
manipulation that is implemented on top of a publicly
available framework for reproducibility purpose [1].

In summary, our contributions are the following:
1) We design a two-stages learning pipeline for humanoid

box loco-manipulation that relies on a mix of rein-
forcement learning and behavior cloning with Prox-
imal Policy Optimization (PPO) [2] and Adversarial
Motion Priors (AMP) [3] for frame-by-frame motion
tracking.

2) We study the robustness and generalization of the
trained policy under variability between the data cap-
ture scene and the policy deployment scene.

3) We highlight how this generalization can be exploited
for long distance transport by manipulating the pick
and drop locations.

4) We validate our framework by deploying it to a real-
world H1 humanoid robot, as seen in Figure 1, and
demonstrating the reproducibility of the whole pick-
and-drop cycle.
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Fig. 1: Loco-manipulation scenario with a H1 humanoid robot: picking a
box up and dropping it down on another table.

II. APPROACH

Our objective is to develop a methodology that enables hu-
manoid robots to learn loco-manipulation behaviors directly
from human motion demonstrations.

• Motion capture recording: The pipeline begins with
the collection of reference motion data in-house by having
a human subject perform the loco-manipulation task while
wearing a full-body motion capture suit. This includes walk-
ing towards a box placed on a table, picking it up, then
walking to another table to drop it down. We record both the
3D trajectories of body markers and the corresponding skele-
tal motion. We also record contact forces through sensors
placed on the hands and on the bottom surface of the box for
accurate identification of contact events during interaction.

• Motion retargeting with IK: The kinematic retargeting
of the collected MoCap trajectory from a human skeleton
to a humanoid robot is formulated as an optimization-
based inverse kinematics through a constrained quadratic
programming problem. The objective function minimizes the
weighted sum of squared errors between the 3D positions and
orientations of key end-effectors (hands and feet) as well as
the pose of the torso, and the head. This formulation allows
for smooth tracking of human motion while preserving the
structural characteristics of the original trajectory.

• Motion tracking with RL: The retargeted reference
data we obtain allows us to use RL to train policies in
simulation for imitating the human motion. Observations
include the usual proprioceptive measurements and the rel-
ative pose of the target scene element. We also introduce
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Fig. 2: Overview of the proposed hybrid training approach. The whole-body imitation policy πθ is rewarded to track only the upper body and root
motion of the human demonstrations while an auxiliary behavior cloning loss term provides supervision from an expert walking policy πE . The student
policy learns to control all joints of the robot and successfully achieves the loco-manipulation task.

two clock signals: a phase variable for synchronizing the
robot with the reference state, and a periodic clock signal
for bipedal gait, which we found to be helpful with sim-to-
real transfers especially for networks without an observation
history. Rewards includes terms for tracking the (1) root
height and orientation, (2) relative poses of torso, left arm,
and right arm in pelvis frame, (3) joint position and velocity
(4) relative pose of the target in pelvis frame, (5) contacts,
and (6) relative positions of the hands in the frame of the
box. We also include regularization terms for minimizing
joint torques, and penalties for joints near the range limits.

• Decoupled supervision for loco-manipulation: While
our motion tracking reinforcement learning framework en-
ables the robot to learn to imitate human motion, directly
mimicking full-body trajectories including walking move-
ments is infeasible due to the substantial dynamic and
morphological differences between humans and humanoid
robots. In particular, the discrepancy in limb proportions
and joint constraints often leads to violations of dynamic
stability when attempting to directly replicate human walking
patterns. Our early sim-to-real experiments showed that
the robot struggles to make stable foot contacts with the
floor while making unrealistically long strides. Furthermore,
tuning IK parameters to enforce both kinematic accuracy
and plausible contact dynamics such as maintaining foot
orientation is labor-intensive and not scalable.

Thus we train an expert bipedal walking policy by adapt-
ing for H1 the approach presented in [4], [5]. We implement
a teacher-student supervision through a behavior cloning
objective, guiding the student policy to match the expert’s
leg actions. This hybrid approach allows the student policy
to benefit from high-level human demonstrations while lever-
aging the robustness and stability of the expert locomotion
policy, resulting in coherent whole-body behavior that suc-
cessfully integrates walking and manipulation.

We train 3 policies respectively for pick-up, drop-off and
return to the origin. Figure 2 highlights the whole hybrid
training architecture.

III. SIMULATION AND EXPERIMENTAL RESULTS

This pipeline relies on the open-source CPU-based sim-
ulation engine Mujoco [6] combined with Ray [7] as a
parallelization framework to scale training on several cores.

First, we leverage the PPO algorithm [2] to train the expert
walking policy on flat ground for a velocity tracking task. We
apply random pushes to the robot, dynamics randomization
and sensor noise, and we add random bumps on the ground
as additional disturbances. The imitation policy is then
trained with all domain randomization disabled. It is further
finetuned after convergence for a few thousands epochs by
re-enabling all randomization for better sim-to-real transfer.
The whole process amounts to around 36 hours of training
using a 32-cores AMD Threadripper PRO 5975WX to gather
samples from 32 environments simultaneously.

• Robustness to target offsets: For potential future
applications, we study the success rate of the policy for
various pick-and-drop positions and orientations around the
baseline training scenario. The robot achieves a consistent
pick-up of the box over a wide range of offsets roughly
between [−2.0, 0.4]m and [−0.8, 0.8]m for the longitudinal
and lateral axes, [−5, 15]cm in height and [−0.4, 0.4]rad
in orientation. This highlights the efficiency of domain ran-
domization for handling setups that deviate from the motion
capture recording, thus extending the robot workspace.

• Extension to long distance loco-manipulation: This
capacity to handle a wide range of deviations from the
reference demonstration pushed us into exploring loco-
manipulation over long distances. To do so, we leverage a
2D planning algorithm to generate paths along which fake
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(a) Dubins paths. (b) Snapshots of pick-up motion and final drop-off.

Fig. 3: Dubins path for the pick and drop motion (left) and snapshots along
the trajectory (right). Intermediate frames of the drop-off part are omitted
for clarity. The fake box and table positions are displayed in green. Due
to the box position and the path curvature constraint, the robot does not
directly move to the box but instead moves past it before looping back.



(a) Picking up the box. (b) Dropping off the box. (c) Going back to starting position.

Fig. 4: Full loco-manipulation cycle by switching policies online. The support crane has been partially edited out for visibility purpose.

target positions will be set to sequentially lead the robot
to the real pick-up and drop-off locations. We integrate in
our pipeline the open-source RRT-Dubins path planner [8].
Figure 3 highlights a pick-and-drop sequence that illustrates
a generalized use-case of the policy that goes beyond the
single motion capture recording we performed.

• Real-world deployment: After training in simulation,
the controller is directly deployed on a real Unitree H1
robot [9]. The policy runs at 40 Hz on a standard laptop
computer by using the Open Neural Network Exchange
(ONNX) framework [10] through the ONNX Runtime in-
ference engine [11]. Communications with the robot are
ensured by the Unitree SDK2 [12] through an Ethernet
connection. As the focus of this work is not to perform fully
autonomous demonstrations, we simplify the experimental
setup by using motion capture instead of onboard sensors
to track the position of the robot, the box and the drop-off
table. We only roughly place them with respect to each other
so small position and orientation offsets are to be expected
compared to the nominal training setup.

Real-world motion control results are shown in Figure 4.
The robot achieves a full loco-manipulation cycle by walking
toward the box, picking it up to drop it off on another table,
then going back to its starting position. This is done in one go
by automatically switching between policies when the phase
clock signal reaches its final value. The cycle can be repeated
on-the-fly by placing the box back on the first table while
the robot is returning to the starting position. This successful
deployment indicates that the domain randomization we used
was effective for crossing the sim-to-real gap.

While the locomotion part of the motion is robust and
repeatable, most failures occur when picking-up the box.
Failures during the drop-off sequences mostly occurred when
the box was not properly picked-up, with the box falling from
the robot’s hand before reaching the table. The differences
in dynamics for the contact interactions between our training
setup and reality partially explain these failures. Moreover,
since H1 only has relative encoders in his arms, slight
calibration errors lead to joint position offsets, which can
worsen the quality of the pick-up motion. Encouraging the
robot to apply more forces on the box during training could
be a way to address this issue as the real robot would then
probably bring its hands closer. However, this is not an
ideal solution for general loco-manipulation as fragile or soft
packages might be damaged by such an approach.

Future improvements could come from a better contact
perception by the policy so that the robot can react online
and correct improper pick-ups.
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